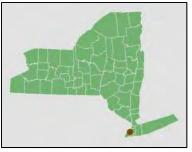

Gowanus Canal Public Meeting

U.S. Environmental Protection Agency Region 2 January 23, 2013 at Carroll Gardens January 24, 2013 at Red Hook

Presentation Overview


- Background
- Sources of Contamination
- Nature and Extent of Contamination
- Summary of Site Risks
- Feasibility Study
- Preferred Remedy
- Schedule

Background

Site Location

Gowanus Canal Project Area

Reference Area

Project History

Gowanus Canal placed on the National Priorities List – March 2010

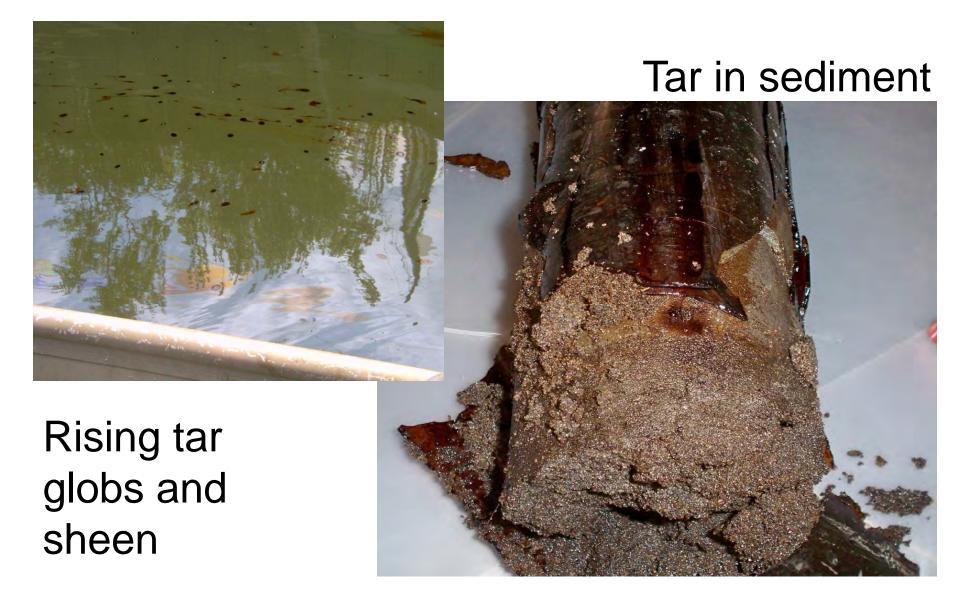
- Remedial Investigation Report January 2011
- Feasibility Study December 2011
- Proposed Plan December 2012

Sources of Contamination

Sources of Contamination

Inactive

Historical industrial activities


Active

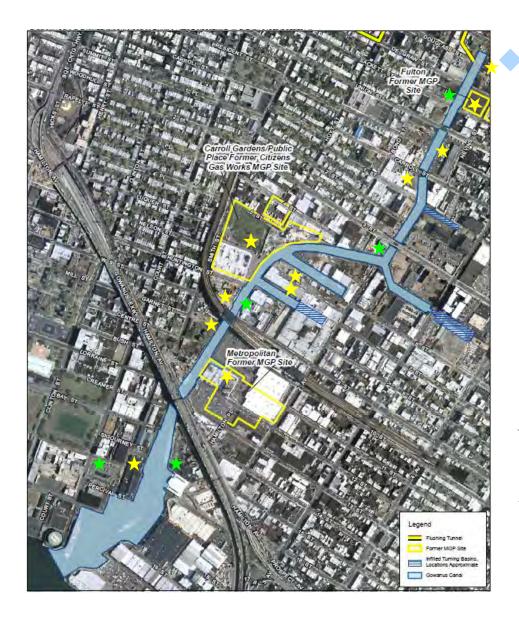
- Three former manufactured gas plants (MGPs)
- Combined sewer overflow (CSO) discharges
- Upland sites with contaminated groundwater
- Unpermitted pipe outfalls

Former MGPs

Combined Sewer Overflows

9/16/2010: Storm floods Gowanus Canal with Raw Sewage

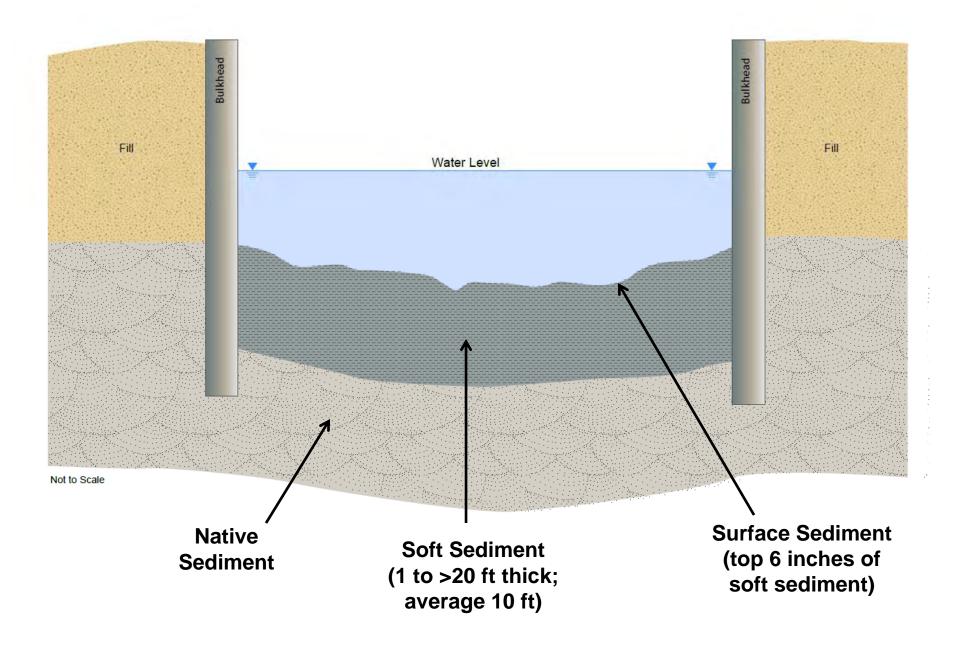
Sediment Mounds


http://www.youtube.com/watch?v=HzWOOqPAEgs

Unpermitted Pipe Outfalls

Discharges are minor compared to other sources

Contaminated Groundwater Discharge

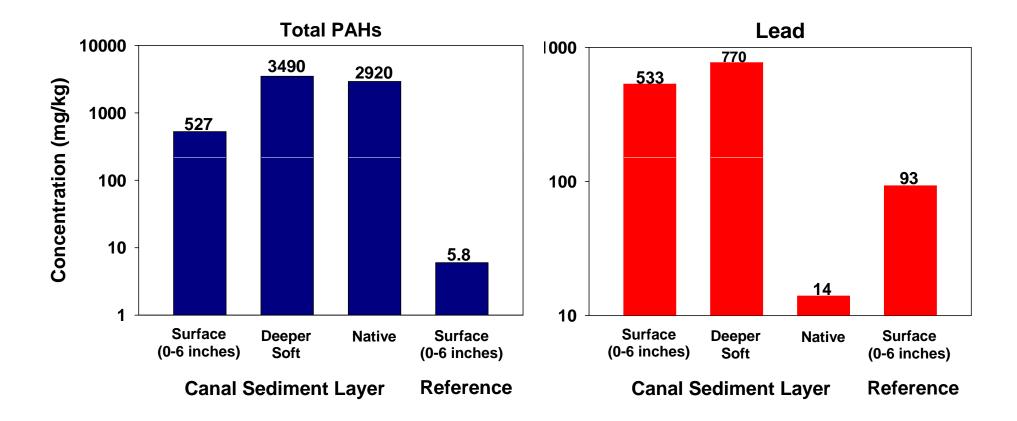


16 properties with contaminated groundwater have been identified and prioritized for further evaluation

- Sites included in NYSDEC program
- New sites referred to NYSDEC

Nature and Extent of Contamination

Gowanus Canal Sediment Layers



Contaminants of Concern

Soft Sediment

- Polycyclic aromatic hydrocarbons (PAHs)
- Polychlorinated biphenyls (PCBs)
- Metals (barium, cadmium, copper, lead, mercury, nickel, silver)
- Non-aqueous phase liquid (NAPL)
- **Native Sediment**
 - PAHs
 - NAPL

Comparison of Sediment Layers

Other contaminants show similar patterns

Summary of Risks

Human Health Risk Summary

Pathways Evaluated	Cancer Risk	Non- Cancer Hazard	Unacceptable Contaminants and Media
Direct contact with surface sediment and surface water and breathing air during recreational use	\checkmark		Carcinogenic PAHs in sediment and surface water
Direct contact with surface sediment and surface water and breathing air during canal overflow	\checkmark		Carcinogenic PAHs in sediment
Ingestion of fish and crabs	√*	√*	PCBs in tissue

*Reference area risk & hazard also unacceptable

Ecological Risk Summary

Risk to bottom-dwelling (benthic) organisms

- PAHs pose greatest risk
- PCBs and metals also contribute
- Risks to wildlife from consuming contaminated prey and sediment
 - Plant-eating birds (e.g., black duck) PAHs
 - Omnivorous birds (e.g., heron) mercury

Feasibility Study

Feasibility Study Process

Six Main Steps

- **1.** Develop Remedial Action Objectives
- 2. Develop Preliminary Remediation Goals
- **3.** Define Remediation Target Areas
- 4. Identify and Screen Remedial Technologies
- 5. Develop and Screen Remedial Alternatives
- 6. Evaluate Remedial Alternatives in Detail

Remedial Action Objectives

Human Health

- Reduce the cancer risk to human health from the incidental ingestion of and dermal contact with PAHs in sediment during recreational use of canal or from exposure to canal overflow to levels that are within or below EPA's excess lifetime cancer risk range of 10⁻⁶ to 10⁻⁴
- Reduce the contribution of PCBs from the Gowanus Canal to fish and shellfish by reducing the concentrations of PCBs in Gowanus Canal sediment to levels that are within the range of Gowanus Bay and Upper New York Bay reference concentrations

Remedial Action Objectives

Ecological

- Reduce the risks to benthic organisms in the canal from direct contact with PAHs, PCBs and metals in sediments by reducing sediment toxicity to levels that are comparable to reference conditions in Gowanus Bay and Upper New York Bay
- Reduce the risk to herbivorous birds from dietary exposure to PAHs.

Remedial Action Objectives

NAPL Mitigation

- Eliminate the migration of NAPL into the canal
- Prevent or minimize NAPL from serving as source of contaminants to the canal

Preliminary Remediation Goals (PRGs)

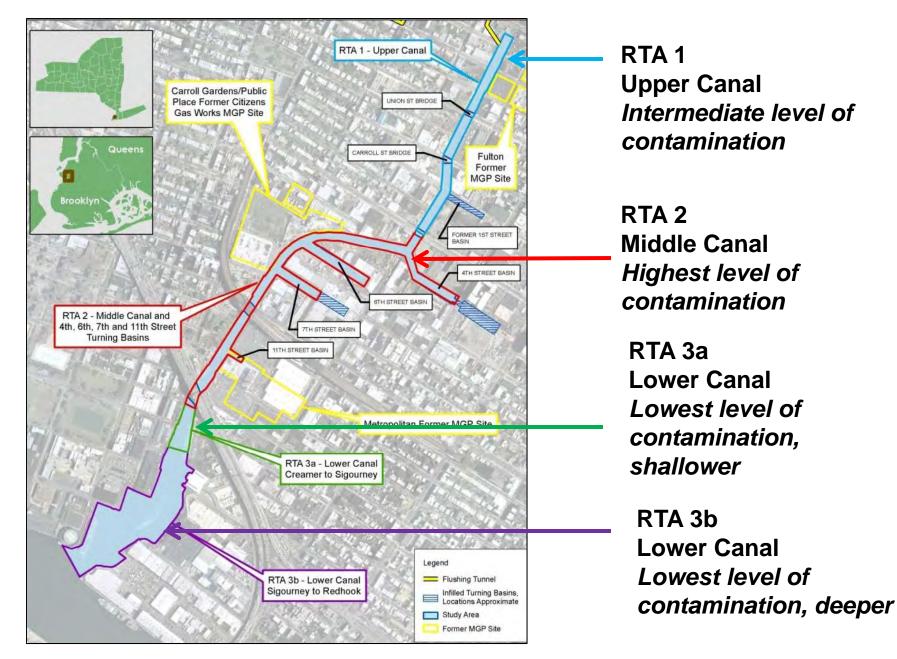
No regulatory standards or criteria for contaminated sediments have been established for New York

 Site-specific PRGs were developed for the Gowanus Canal to identify the target area for cleanup

"Clean" canal bottom surface will be established at the end of the cleanup; PRGs are also performance targets for the "clean" surface

PRGs for Human Health Protection

	Concentration (mg/kg)				
	Recreati				
Contaminant	Upper Bound (1 X 10⁻⁴)	Lower Bound (1 X 10 ⁻⁶)	Fish/Crab Ingestion		
BAA	24	0.40			
BAP	2.4	0.040			
BBF	24	0.40			
BKF	240	4.0			
DA	2.4	0.040			
ID	24	0.40			
Total PCBs			0.48		


BAA – benzo(a)anthracene, BAP – benzo(a)pyrene, BBF – benzo(b)fluoranthene, BKF – benzo(k)fluoranthene, DA – dibenz(a,h)anthracene, ID – indeno(1,2,3c,d)pyrene

PRGs for Ecological Protection

	Concentration (mg/kg)		
Contaminant	Benthic Community	Herbivorous Birds	
Total PAH	20*	230	
Copper	80		
Lead	94		

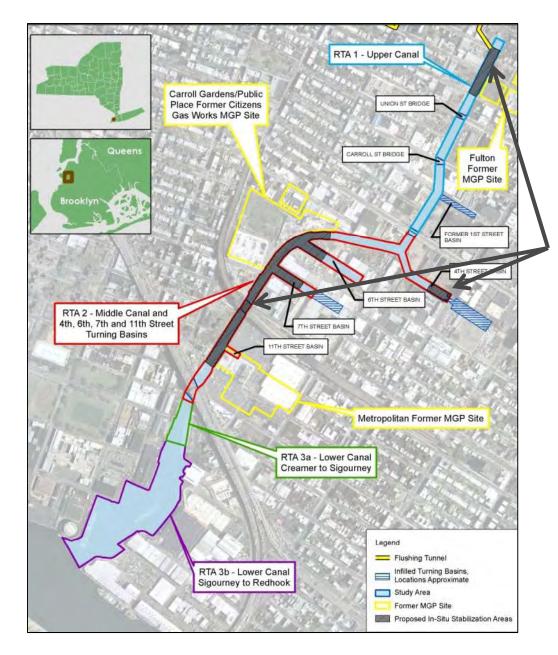
*At 6% total organic carbon content

Remediation Target Areas (RTAs)

Remedial Alternatives Sediment Dredging and Capping

- 1 No Action
- 2 Dredge soft sediment to specified elevation Two-layer cap (isolation and armor layers)
- 3 Dredge soft sediment to specified elevation Three-layer cap (treatment, isolation, and armor layers)
- 4 Dredge all soft sediment Two-layer cap (isolation and armor layers)
- 5 Dredge all soft sediment Three-layer cap (treatment, isolation, and armor layers)
- 6 Dredge all soft sediment Stabilize top of native sediment Two-layer cap (isolation and armor layers)
- 7 Dredge all soft sediment Stabilize top of native sediment Three-layer cap (treatment, isolation, and armor layers)

Capping

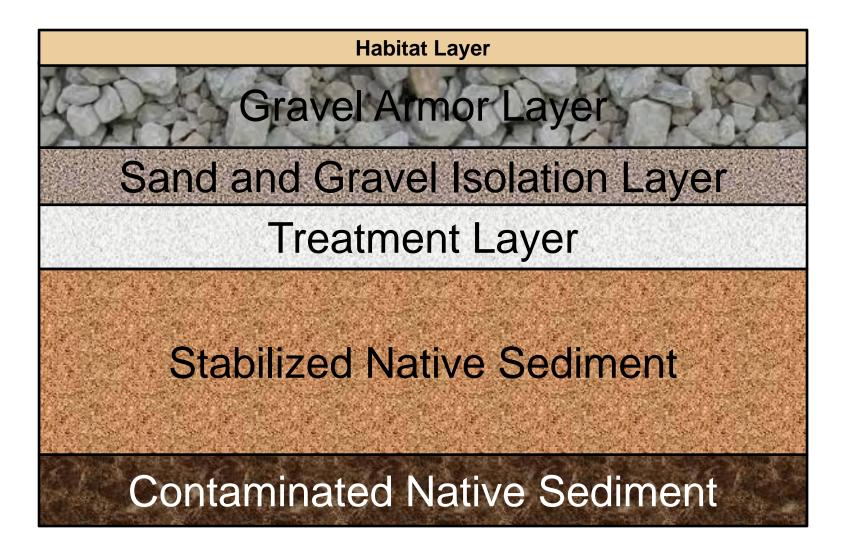

Capping included in all alternatives except No Action

 NAPL-contaminated sediments beyond practical depth of removal

Capping-only alternative not considered because:

- Cap in RTA 1 would restrict water depth and expose large area of sediment at low tide
- Cap in RTA 2 would compress soft sediment and mobilize NAPL
- Capping only remedy is not compatible with continued commercial navigation

In Situ Stabilization (ISS)

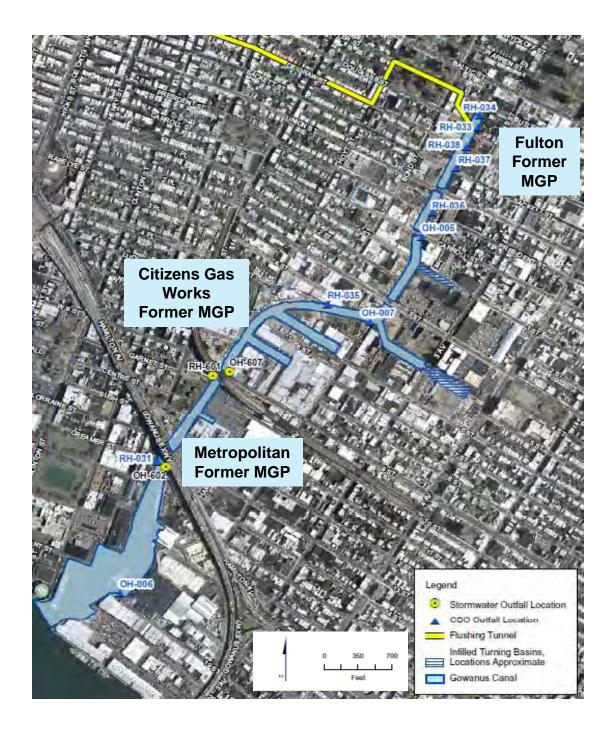


ISS in areas where NAPL may migrate upward from native sediment

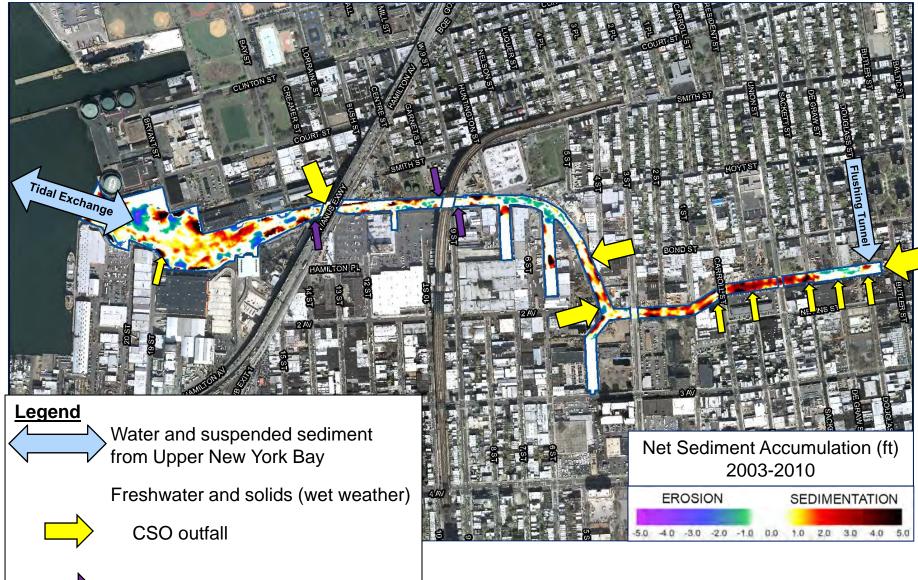
Pre-design investigation planned to refine ISS approach and target areas

ISS also should reduce contaminant transport to the canal via groundwater discharge

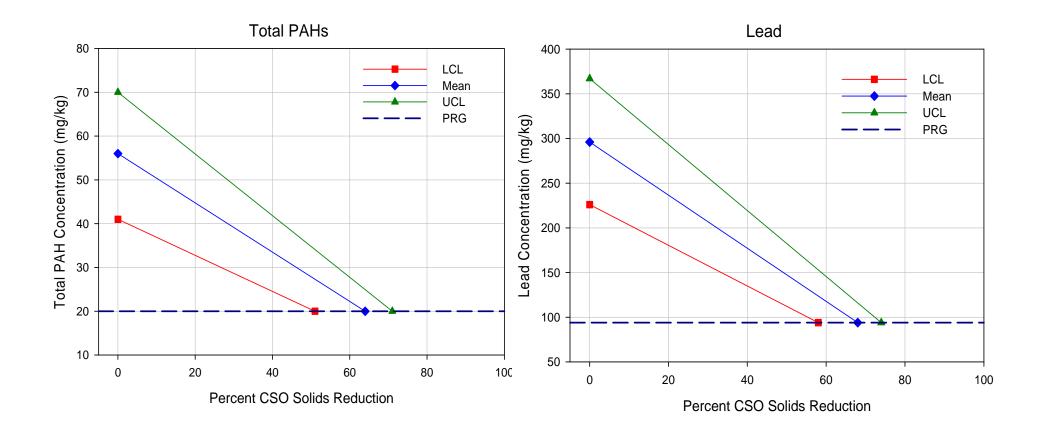
Conceptual Layout of Capping and *In Situ* Stabilization



Source Control


- Source control required for any alternative to be effective
- Included as a component of all action alternatives
- Source control measures for:
 - Discharges from former MGPs and other upland sites
 - CSO discharges
 - Contaminated groundwater discharge
 - Discharges from unpermitted pipes

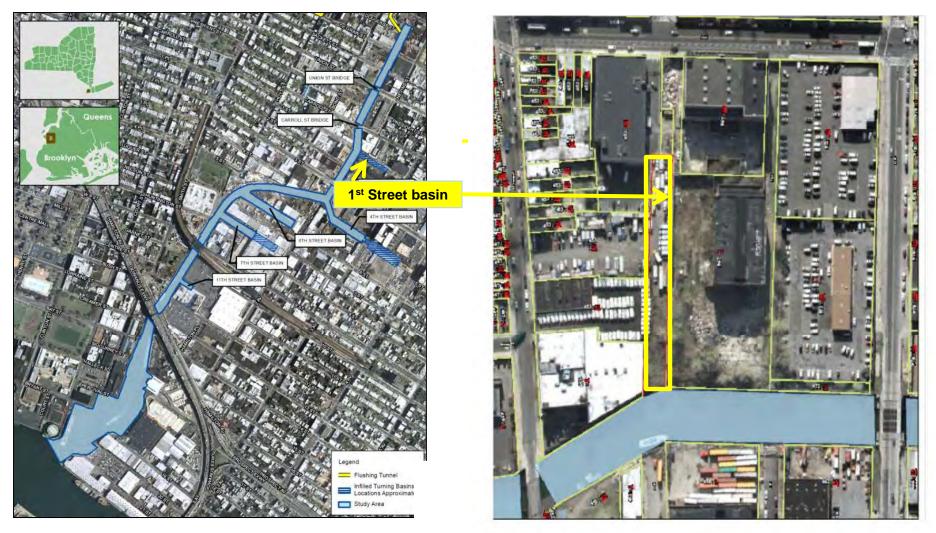
Source Control – Locations of Former MGPs



Source Control – CSO Discharges

Stormwater outfall

Source Control – Preliminary Estimate of Solids Reductions to Achieve Remediation Goals


Source Control – Potential CSO Storage Tank Locations

CSO RH-034

1st Street Basin Excavation

Component of all alternatives

Remedial Alternatives Treatment and Disposal Options

		RTA1	RTA 2	RTA 3
Α	Off-site thermal desorption, beneficial use	Y	Y	Y
В	Off-site disposal (landfill)	Y	Υ	Υ
С	Off-site cogeneration, beneficial use	Y	Υ	Υ
D	Off-site stabilization, beneficial use	Y	Ν	Υ
Е	On-site stabilization, beneficial use	Y	Ν	Υ
F	Off-site stabilization/disposal in on-site Confined Disposal Facility (CDF)	Ν	Ν	Y
G	On-site stabilization/disposal in on-site CDF	Ν	Ν	Y

Y – yes (retained) N – no (screened out)

Conceptual Diagram of Potential CDF

ES080211052107KNV

CH2MHILL.

Detailed Evaluation of Alternatives

Detailed evaluation performed using NCP criteria

• Threshold Criteria

- Overall Protection of Human Health and the Environment
- Compliance with "applicable or relevant and appropriate requirements" (ARARs)

Balancing Criteria

- Long-term Effectiveness and Permanence
- Reduction of Toxicity, Mobility or Volume through Treatment
- Short-term Effectiveness
- Implementability
- Cost

Modifying Criteria

- State Acceptance indicates if, based on its review of the Proposed Plan, State concurs with proposed remedy
- Community Acceptance refers to public's general response to proposed remedy

Preferred Remedy

Preferred Remedy Dredging and Capping

- RTA 1 and 2
 - Alternative 7
 - Dredge all soft sediment
 - In-situ stabilization of target areas of native sediment
 - Cap with 3-layer cap
- RTA 3
 - Alternative 5
 - Dredge all soft sediment
 - Cap with 3-layer cap
- Remedy also includes
 - Excavation of 1st Street Basin
 - Source Controls
 - Institutional Controls

Preferred Remedy Source Controls

Former MGPs and other upland sites

- Being addressed/evaluated by NYSDEC
- Remedy for former MGP site Public Place includes:
 - Cut-off wall between site and canal
 - Removal of major mobile coal tar sources
 - Recovery wells on approach to cut-off wall
- Remedies for MGPs Fulton and Metropolitan may be similar
- Schedules will be coordinated with the canal remedy

Preferred Remedy Source Controls (contd.)

CSO discharges

- Solids reduction at two major outfalls
- In-line retention tanks at RH-034 and OH-007 presumed, for cost estimating, to be 8-million and 4-million gallons, respectively
- Estimated cost: \$78 M

Unpermitted pipe discharges

- Coordinate with NYCDEP and NYSDEC to permit or seal
- Minimal costs anticipated

Preferred Remedy Treatment and Disposal

- RTA 1 Upper Canal
 - Option A Off-site thermal desorption
 - NAPL impacted areas
 - Option D Off-site stabilization, beneficial use
 - Non-NAPL impacted areas

RTA 2 – Middle Canal

Option A- Off-site thermal desorption

RTA 3 – Lower Canal

- Option D Off-site stabilization, beneficial use
- Option G On-site stabilization, placement in onsite CDF; CDF contingent upon state and public acceptance

Preferred Remedy Cost

Present worth cost: \$467-504 million

- Capital: \$286M
- Annual O&M: \$2M
- Treatment and Disposal: \$179-216 million

Costs include 1st Street basin excavation and storage tank source controls at two CSOs

Basis: 7% discount rate and 30-year time interval

Costs are order of magnitude estimates, +50% to -30%

- Costs assume RTA 3 sediment undergoes on-site stabilization and disposal in on-site CDF.
- If off-site stabilization and beneficial use selected, costs increase by \$37 million.

Basis for Remedy Preference

Removal of all soft sediment will

- Permanently remove grossly-contaminated material from the environment
- Limit potential for recontamination by multiple contaminants in the event of future cap failure

Basis for Remedy Preference (contd.)

Removal of all soft sediment (contd.)

- Greater water depth would support navigation and better protect the cap from damage
- Necessary for remedy implementation and future maintenance of remedy and bulkheads
- Treatment and disposal options allow beneficial use of dredged sediments

Schedule

Public comments due – March 28, 2013
Selection of Remedy – Summer of 2013
Completion of Remedial Design – by 2016
Completion of Remedial Action – by 2022

